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ABSTRACT

We consider the image mosaicing task of estimating the
homography that defines the transfer function between a
pair of overlapping images. A novel homography esti-
mator is proposed that is multi-objective in character in
its dealing with a system of underlying equations. Ex-
periments carried out with both synthetic and real im-
ages reveal the estimator to be commensurate in accuracy
with the Gold Standard maximum likelihood estimator,
but with the advantage of being considerably faster.

1. INTRODUCTION

A mosaic is constructed by “stitching” together several
overlapping images. Such composite images find appli-
cation in the generation of panoramic views, virtual real-
ity tours (in particular when mosaics cover a 360◦ view)
and super-resolution images. If two overlapping images of
a planar scene are taken from different camera positions
and/or orientations or when a single camera undergoes
pure rotation, the images are linked via a planar projective
transformation, or homography. Accurate computation
of homographies has been the subject of much attention
[1–6]. This paper proposes a new homography estima-
tor that is multi-objective in character in that it deals with
a system of underlying equations. Experimental results
indicate that the method estimates homographies with ac-
curacy commensurate with the Gold Standard maximum
likelihood method, but in considerably less time.

2. HOMOGRAPHY

A homography is a projective mapping between two im-
age planes and, when homogeneous coordinates are used,
is described by a 3× 3 matrix. Suppose that left and right
image points m = [u, v, 1]T and m′ = [u′, v′, 1]T re-
sulting from a projection of a single point in the scene are
related by a homography HT = [h1,h2,h3]. Then

v′hT
3 m− hT

2 m = 0,

hT
1 m− u′hT

3 m = 0,

u′hT
2 m− v′hT

1 m = 0.

(1)

These equations are linearly dependent and only a combi-
nation of any two of them is linearly independent. So one
has a choice of using either all three equations or any of

three pairs of equations to derive a homography estimate
of H .

Define a single item of data by concatenating the co-
ordinates of a pair of matching points into a vector x =
[u, v, u′, v′]T . Let θ = vec(HT ), where vec denotes vec-
torisation [7]. Starting with all three equations, we let

f(x,θ) = [f1(x,θ), f2(x,θ), f3(x,θ)]T ,

where f1, f2 and f3 are the corresponding expressions on
the left-hand side of (1). System (1) can then be succinctly
written as f(x,θ) = 0. Creating a “pure” measurement
matrix U(x) = [u1(x),u2(x),u3(x)], where

u1(x) = [0, 0, 0,−u,−v,−1, uv′, vv′, v′]T ,

u2(x) = [u, v, 1, 0, 0, 0,−uu′,−vu′,−u′]T ,

u3(x) = [−uv′,−vv′,−v′, uu′, vu′, u′, 0, 0, 0]T ,

we have f(x,θ) = U(x)T θ. If only two equations of (1)
are employed, f(x,θ) is modified to comprise only two
components accordingly.

3. FUNDAMENTAL NUMERICAL SCHEME

Given a data set x1, . . . ,xn, the simplest way to find θ is
to solve the system f(x1,θ) = · · · = f(xn,θ) = 0. The
parameter θ is sought only up to a non-zero scalar factor,
so the problem has 8 degrees of freedom. When n > 8
and noise is present in the data points, the system has no
non-zero solution. However, an approximated maximum
likelihood estimate of θ, θ̂AML, can always be evolved by
minimising the multi-objective cost function

JAML(x1, . . . ,xn,θ) =
n∑

i=1

f(xi,θ)T C(xi,θ)−1f(xi,θ)

where C(xi,θ) = ∂xf(xi,θ)Λxi∂xf(xi,θ)T and Λxi

is a symmetric covariance matrix associated with the im-
age measurement xi. The gradient of JAML with respect
to θ, ∇θJAML, vanishes at the minimiser θ̂AML. Direct



computation shows that ∇θJAML = 2Xθθ, where

Xθ =
n∑

i=1

U iΣ−1
i UT

i − (ηT
i ⊗ I l)Bi(ηi ⊗ I l),

U i = U(xi) = [u1(xi), . . . ,um(xi)], m ∈ {2, 3},
Bi = ∂xivec(U i)Λxi(∂xivec(U i))T ,

Σi = (Im ⊗ θT )Bi(Im ⊗ θ),

ηi = Σ−1
i UT

i θ

with I l the l × l identity matrix and ⊗ Kronecker prod-
uct [7]. Finding θ̂AML reduces then to solving the vari-
ational equation Xθθ = 0. One algorithm for numeri-
cally solving this equation is the fundamental numerical
scheme (FNS) presented in Figure 1. This scheme was
originally proposed in a version adequate for optimisa-
tion of a single-objective cost function [8,9]. Importantly,
in the case of three principal equations, the computation
of Xθ uses the rank-constrained generalised inverse of
rank 2 of Σi, (Σi)−2 , [10] instead of Σ−1

i to eliminate po-
tential instabilities that might occur for small noise. The
scheme is seeded with the normalised algebraic least-
squares (NALS) estimate, θ̂NALS. This estimate results
from operating the algebraic least-squares (ALS) method
on Hartley-normalised data [11]. ALS is a simple non-
iterative technique employing singular value decomposi-
tion.

1. Set θ to θ̂NALS.
2. Repeat:

(a) Compute the matrix Xθ;
(b) Compute a normalised eigenvector of

Xθ corresponding to the eigenvalue
closest to zero (in absolute value);

(c) Take the computed eigenvector for an
update of θ;

until convergence.

Fig. 1. Fundamental numerical scheme.

In the way it uses the rank-constrained generalised in-
verse of Σi, FNS based on three principal equations re-
sembles Kanatani’s method of renormalisation [4]. The
latter method is more complicated than FNS and com-
putes merely an approximate solution to the variational
equation.

4. EXPERIMENTAL EVALUATION

In this section, we present the results of comparative tests
carried out to evaluate the performance of FNS. Three al-
gorithms were used to compute homographies from both
synthetic and real image data. The covariances of data
were assumed to be the default 4×4 identity matrix corre-
sponding to isotropic homogeneous noise in image point
measurement. The basic estimation methods considered
were:

• ALS = Algebraic least-squares,
• FNS = Fundamental numerical scheme,
• GS = Gold Standard.

GS is an advanced method [5] for minimising the max-
imum likelihood cost function JML given in (2) below. GS
and FNS are both seeded with the NALS estimate of H .
Execution of FNS was terminated every time the JAML-
values of current and updated iterates were sufficiently
close.

4.1. Synthetic Image Tests

Repeated experiments were performed in order to collect
results of statistical significance. In each test 60 copla-
nar scene points were generated as in Figure 2 and then
projected by two cameras onto two respective images of
500 × 500 pixels to provide “true” matches. Homoge-
neous Gaussian noise with standard deviation σ = 1 pixel
was added to each image point and the contaminated pairs
were used as input to the three algorithms. For each of
200 experiments, one ML estimate was calculated against
four ALS and AML estimates depending on whether all
three equations of (1) or a combination of two have been
used. The tables below show averages over the 200 ran-
dom trials.
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Fig. 2. A random planar scene photographed by a pair of
cameras with non-parallel optical axes.

Table 1 gives results for a commonly used error mea-
sure, the symmetric transfer error, given by∑

i

d(xi,H
−1x̄′

i)
2 + d(x′

i,Hx̄i)2,

where x̄i and x̄′
i denote true matches and d(x,y) is the

Euclidean distance between points x and y expressed in
inhomogeneous coordinates. The order of the error is
comparable to the level of noise introduced in the data
points, which matches expectations.

Table 2 considers the JAML cost function and shows
that the θ̂AML estimates achieve very similar cost values.

Perhaps the most critical test comes from using the
maximum likelihood function, JML, defined by∑

i

d(xi, x̂i)2 + d(x′
i, x̂

′
i)

2, (2)



Homography Equations

Methods 1− 2− 3 1− 2 1− 3 2− 3

GS 2.51 − − −
ALS 2.69 2.53 2.72 2.96
FNS 2.51 2.51 2.51 2.51

Table 1. Symmetric transfer error.

Homography Equations

Methods 1− 2− 3 1− 2 1− 3 2− 3

GS 111.23 − − −
ALS 121.91 112.13 123.16 136.97
FNS 111.23 111.19 111.23 110.93

Table 2. JAML cost values.

where x̂i and x̂′
i are corrected data points such that x̂′

i =
Ĥx̂i for all i. Inspecting Table 3, we see that FNS esti-
mates produce very competitive cost values in comparison
to the GS estimate.

Homography Equations

Methods 1− 2− 3 1− 2 1− 3 2− 3

GS 111.20 − − −
ALS 133.17 113.51 135.57 167.01
FNS 111.21 111.20 111.28 111.24

Table 3. JML cost values.

Finally, a timing test is presented in Table 4. Unsur-
prisingly, GS turns out to be by far the slowest of the meth-
ods. While it may be speeded up via the incorporation of
sparse-matrix techniques, it is intrinsically slow given the
high-dimensionality of its search strategy.

Homography Equations

Methods 1− 2− 3 1− 2 1− 3 2− 3

GS 19.04 − − −
ALS 0.10 0.10 0.10 0.09
FNS 4.59 2.54 2.53 2.55

Table 4. Execution time in seconds.

4.2. Real Image Tests

Two sequences of images were acquired by rotating a
camera about its centre. The images are registered using
planar homographies from FNS and composed into single
panoramic mosaics, shown in Figures 3 and 4.

4.2.1. Convention Centre Sequence

Tables 5 and 6 give test averages for the two homography
estimations. FNS and GS give the best results and are es-

sentially inseparable. FNS is much faster than GS despite
the relatively low number of matches.

Homography Equations

Methods 1− 2− 3 1− 2 1− 3 2− 3

GS 89.98 − − −
ALS 93.93 96.39 97.27 94.64
FNS 89.98 89.97 89.99 89.97

Table 5. JAML residuals.

Homography Equations

Methods 1− 2− 3 1− 2 1− 3 2− 3

GS 15.65 − − −
ALS 0.26 0.08 0.09 0.09
FNS 5.16 2.19 2.20 2.21

Table 6. Execution time in seconds.

4.2.2. War Memorial Sequence

Three homography estimations were needed in this case
and average results are presented in Table 7. Again FNS
and GS produce close results with FNS being significantly
faster.

Methods JAML Time (sec) Iterations

ALS 3339.07 0.13 1
FNS 164.08 6.30 5
GS 164.07 24.36 5

Table 7. JAML residual, execution time and iterations.
Estimation was carried out using all three equations in (1).

5. CONCLUSION

A newly-developed parameter estimation method was
proposed for problems in which the relationship between
parameters and image data is expressed as a system of
equations. Its performance was demonstrated on the es-
timation of homographies used to build panoramic mo-
saics. In this application, it is possible to base the esti-
mation process on two or three equations. Our tests re-
vealed that selecting the first two equations provides ad-
vantages in terms of speed with no effect on the accuracy
of the solution. In general, when compared to the much
slower NALS-seeded GS, FNS gives almost identical re-
sults, both in terms of JAML residual and GS’s MLE cost
function residual.
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